
VI  FORECASTING AND DECISION FOR MULTIPLE ECOSYSTEMS SUBJECT TO 

REGIME SHIFTS 

 

Introduction 

 

All lakes have some essential similarities.   The interaction of the phosphorus and 

carbon cycles is a key process for the functioning of nearly all lake ecosystems.  Size-

structured predation governs food web dynamics in nearly all lakes.  Such repeatable 

patterns of biogeochemistry, food web organization,  and other processes mean that 

information from one lake is often transferable to a different lake.  Because of these 

fundamental similarities among lakes, lakes are to some extent substitutable or 

exchangeable for purposes of scientific inference.  These similarities are the basis of 

comparative limnology (Cole et al. 1991, Rigler and Peters 1995).   Other types of 

ecosystems, such as small watersheds or islands, may also be replicates in some 

respects.  This degree of similarity among ecosystems provides ecosystem managers 

with potential approaches to the dilemma discussed in Chapter V. 

 

 Chapter V considered the possibility of anticipating regime shifts in advance for a 

single ecosystem, by monitoring key indicators and updating a dynamic model.  The 

probability of measuring the threshold was low, unless a regime shift occurred.  It 

proved difficult or impossible to learn the threshold for the regime shift without crossing 

it and transforming the ecosystem.  If the regime shift is costly and difficult to reverse, 

then a cautious policy that minimizes risk of regime shift may be preferable to a learning 
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policy that attempts to locate the threshold.  Thus, in unique ecosystems subject to 

regime shifts, there is a dilemma between precaution and experimentation.  Social-

economic pressures to exploit the ecosystem may oppose precaution, but in the 

absence of information about the location of the threshold, one does not know which  

policies may cause a regime shift. 

 

Prospects for measuring the threshold might improve, however, if many 

ecosystems are available for study and information is transferable among ecosystems.  

If a large number of similar ecosystems are available, it may be possible to use a few of 

them for experimentation, to gain information about the threshold and avoid unwanted 

regimes in the majority of ecosystems.  That possibility is explored in this chapter.  As in 

Chapter V, I will use an ecosystem model combined with models for learning and 

management to ask whether and how experimental learning might improve prospects 

for managing ecosystems subject to regime shifts. 

 

A Landscape of Lake Fisheries 

 

Consider a landscape with many lakes and fisheries subject to exploitation and 

management (Fig. 41).  This general situation occurs in many regions of the world.  For 

example, the walleye fishery of northern Wisconsin includes hundreds of lakes, which 

are managed using models calibrated with regular studies of a subset of 125 lakes 

(Beard et al. 2003a,b).  Marine fisheries have also been assessed using the assumption 

that information on different stocks is exchangeable (Liermann and Hilborn 1997). 
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This chapter considers a set of similar lakes with exploited fisheries (Fig. 41).  

The dynamics within each lake ecosystem resemble those described in Chapter II for 

depensation in fish populations (Fig. 8).  A piscivorous fish population is subject to 

harvest (Fig. 41).  Juvenile piscivores are consumed by other species of fishes (forage 

fish), which are preyed upon by adult piscivores.  As discussed in Chapter II, predator-

prey interactions of this type can exhibit cultivation-depensation dynamics, in which 

recruitment of the piscivore depends on the capacity of adult piscivores to control the 

forage fish population (Walters and Kitchell 2001).   

 

The piscivore stock collapses if the adult population falls below a certain critical 

level (Fig. 41).  This phenomenon, called critical depensation or the Allee effect (Allee 

1931, Begon et al. 1986), is marked by negative population growth rates when the 

population drops below the threshold for critical depensation.  Critical depensation has 

important implications for resource management and conservation because it implies 

that population sizes well above zero may be nonviable (Dennis 1989, Stephens and 

Sutherland 1999).  If this is true, then sustainable policies must maintain population 

levels well above the threshold, to ensure that stochastic events do not take the 

population below the threshold. 

 

In the model used in this chapter, the critical depensation threshold depends on 

the availability of nearshore habitat for juvenile piscivores.  Predatory interactions 

(shaded box in Fig. 41) occur primarily in nearshore habitat, such as rooted aquatic 
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plants or trees fallen into the lake.  If adequate habitat exists for juvenile piscivores, they 

suffer little mortality from predation by forage fishes. As habitat availability declines, the 

mortality of the juvenile piscivores increases.  This phenomenon is discussed in Chapter 

2 and illustrated in Fig. 8.  The role of habitat in fish recruitment is important, because 

shoreland development practices are altering fish habitat and growth in some lakes 

(Christensen et al. 1996, Olson et al. 1998, Schindler et al. 2000).  The documented 

effects of habitat on fish growth suggest potentially important impacts on size-structured 

predation and fish community change. 

 

In aquatic ecosystems, size-selective interspecific predation creates many 

situations in which critical depensation is possible (Chapter II; de Roos and Persson 

2002, Walters and Kitchell 2001).  The location of the threshold may depend on life 

history characteristics of the fishes as well as characteristics of the habitat.  Factors 

which may drive a population across the threshold include fishing, invasion of exotic 

species or weather during key times of the fishes’ life history (Chapter II).  

 

Although critical depensation is potentially widespread in aquatic food webs, and 

is profoundly important for management, it has proven difficult to quantify thresholds in 

advance of population collapses, or even to detect depensation statistically (Liermann 

and Hilborn 1997).  This difficulty has led to controversy in both fishery management 

and conservation.  Presence or absence of depensation has implications for the 

structure of ecosystem models and for harvest or conservation derived from them 

(Pascual et al. 1997, Runge and Johnson 2002).  The problem, then, is one of choosing 
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which model is most appropriate for decisions (Peterson et al. 2003).  Ecosystem 

manipulations should be helpful in determining which model is most appropriate 

(Walters 1986, Petraitis and Latham 1999, Carpenter 2002). 

 

I assume that the manager’s task is to sustain the fisheries by regulating harvest 

rates.  A program of monitoring and modeling is in place to guide the process of 

regulating harvest.  Experiments using a subset of the lakes can be conducted to 

estimate the depensation threshold, and this information can be used to manage all the 

lakes of the landscape (Fig. 41).  To assess the value of the information obtained from 

the experiments, it is necessary to measure the performance of the management 

system.  I will use the expected future harvest over infinite time to measure 

management performance.  Sport fisheries usually have substantial economic benefits 

which are largely related to expenditures on equipment and travel (Postel and 

Carpenter 1997).  It seems reasonable to assume that expected future harvest over 

infinite time is an appropriate indicator of the total net economic benefits of managing 

the fishery.  

 

Model 

 

The model was designed to be as simple as possible, while retaining the necessary 

features demanded by the goals of this chapter (Fig. 42).   These features include an 

ecosystem subject to regime shift, the possibility of different types of experiments to 

gain information about the threshold, plausible statistical models with different 
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implications for management, and an explicit process for choosing harvest policies.  The 

model first appeared in Carpenter (2002).   

 

There is one state variable, a harvested fish population subject to critical 

depensation.  The depensatory process depends on the quality of habitat, represented 

by the number of fallen trees in the littoral zone of the lake.  The habitat is assumed to 

change slowly relative to the fish population.  I assume that both the fish population and 

the number of fallen trees can be manipulated experimentally.  Such experiments are 

presently underway in lakes of northern Wisconsin 

http://biocomplexity.limnology.wisc.edu/).   

 

In this chapter, I will consider two contrasting experimental designs, one which 

yields little information and another which is highly informative.  Data from experimental 

manipulations are fitted to two statistical models which (1) provide reasonably good fits 

to simulated data but (2) yield different estimates of the threshold and have sharply 

different implications for policy choice.   

 

Population dynamics of the adult piscivores follow 

 

At+1 =  At exp(Gt + Nt) - Ct         (10) 

 

where At is adult stock in year t, Ct is harvest in year t, Gt is a function for population 

dynamics, and Nt is a function for stochastic shocks.   
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Population dynamics Gt are given by 

 

Gt =  k +  f At (1 - m At - {c (h/Wt)q / [ (h/Wt)q + At
q] } )     (11) 

 

Parameters include minimum population growth rate k, fecundity f, density-dependent 

mortality m, and three parameters for mortality due to interspecific predation on juvenile 

piscivores, c, h and q.  Wt is the amount of habitat available for juvenile piscivores in 

year t.  Maximum mortality due to interspecific predation is c, h determines the level of 

W at which interspecific predation occurs at half the maximum rate, and q determines 

the slope of the interspecific mortality curve near this half-maximal point.  Wt is the time 

series of habitat.  The interspecific predation term {c (h/Wt)q / [ (h/Wt)q + At
q] } is plotted 

against adult stock for two different levels of habitat in Fig. 8B.  Interspecific predation 

on juvenile piscivores declines with adult population size, because the adults suppress 

the forage fishes that prey on the juveniles.  Also, as the amount of habitat for juvenile 

piscivores (W) increases, predation on juvenile piscivores declines. 

 

Process noise Nt represents stochastic effects on population dynamics due to 

factors such as weather.  This term is given by   

 

 Nt = z - s2/2, where z ~ N(0,s2)     (12) 
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The process variance is s2.  The noise term in equation 12  is adjusted by subtracting 

s2/2 so that the mean value of eN is zero (Hilborn and Mangel 1997). 

 

 In the following, I refer to the true system dynamics as the dynamics given by 

equations 10 to 12.  The deterministic portion of the true dynamics is calculated by 

setting Nt = 0. 

 

For certain parameter values a threshold value of A can exist, below which the 

population collapses to zero, and above which the population reaches a stable point.  

This can be seen at equilibrium by rearranging the deterministic part of the model 

(Equations 10 and 12) as   

 

exp {f A(m A + {c (h/W)q / [ (h/W)q + Aq] } ) } = [A / (A + C)] exp (k + f A) (13) 

 

The left side of Equation 13 is the total rate of natural (non-harvest) mortality.  The right 

side is the total birth rate adjusted by the proportion of the population that is not 

harvested.  In this model, habitat is assumed to change more slowly than the fish 

population.  This is the case in lakes where habitat is provided by trees fallen into the 

lake (Christensen et al. 1996), because tree population dynamics are generally slower 

than those of fishes. In that case it makes sense to calculate steady-state fish 

populations (see below) for a given level of habitat, as shown in equation 13.  These are 

not true steady states because they change slowly over time as habitat changes 

(Rinaldi and Scheffer 2000). 
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When the left side and right side of equation 13 are plotted on the same axes (as 

in Fig. 43 described below), the intersections correspond to equilibria.  In many cases, 

parameters lead to two intersections.  In these cases, the lower equilibrium is an 

unstable threshold (the depensation threshold) and the upper one is stable. The 

threshold level is inversely related to W.  Discussions of similar models are presented 

by Clark (1990), Carpenter (2001, 2002) and Walters and Kitchell (2001).  

 

The management challenge is to sustain the fishery without crossing the 

threshold to collapse, given the complications of stochasticity, possibly unknown 

parameters which must be estimated from data, and slow change in W which may be 

poorly known. 

 

The manager uses a subset of the lakes for ecosystem experiments to fit models 

for the piscivore population dynamics.  The manager is aware that both population size 

and habitat may have important effects on the dynamics.  Two types of experiments are 

considered, one in which contrasts are weak and another in which contrasts are strong.  

The experiments and their outcomes are described in the next section. 

 

 I assume that the manager does not know the true model, but instead fits 

approximate models to observed time series of A and W.  Many approximate models 

are conceivable, but only two particularly interesting ones are analyzed here.  In 

DRAFT:  DO NOT CITE OR QUOTE 9



subsequent text, I refer to these as the estimated models.  The first of these, referred to 

as the simple model, is a lag-1 autoregressive model with density dependence: 

 

 Yt = b0 + b1 At-1 + b2 At-1
2 + εt      (14) 

  

The second estimated model, referred to as the habitat model, is the simple model 

augmented with a term that accounts for habitat effects 

 

 Yt = b0 + b1 At-1 + b2 At-1
2 + (b3 / Wt-1) + εt     (15) 

 

In extensive simulations , the simple habitat term, b3 / Wt-1, produced reasonably good 

fits to data, leaving little pattern in the residuals.  Thus the habitat term represents an 

estimator of habitat effects that might well be obtained from empirical regression 

analyses of data generated by equations 10 to 12.  The bi are parameters to be 

estimated from data and the errors εt are assumed to be normally distributed with mean 

0 and unknown variance σ2.  The response series Y is 

 

 Yt = log [(At + Ct-1) / At-1]       (16) 

 

Predicted one-step-ahead distributions of At+1 =  Atexp(Yt) -Ct are obtained using the 

posterior distribution of Yt.  This posterior is calculated by analyzing equations 14 and 

15 using Bayesian multiple linear regression with a prior distribution that is uniform on 

the bi and log(σ) (Appendix; Gelman et al. 1995). 
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 For the purposes of this chapter, I assume that management follows an optimal 

control policy.  That is, the manager estimates the population size that leads to the 

maximum expected yield over infinite time, and adjust harvest to stabilize the population 

at that optimal level.  Harvest policies of this type have many difficulties, both in theory 

and practice (Walters 1986, Hilborn and Walters 1992, Ludwig et al. 2001).  In this 

chapter they are used as a benchmark to show how the difficulties of estimating 

thresholds can lead to extirpation of valuable populations.  The analyses presented here 

depict only one of the difficulties of optimal control policies for living resources.  For a 

broader view of the problems with optimal management of natural resources, and some 

alternatives, see Gunderson and Holling (2002). 

 

 If management follows an optimal control policy, the goal is assumed to be 

maximization of utility V derived from harvest (Clark 1990), defined here as 

 

 V = Σ δt Ct         (17) 

 

In words, the performance of the fishery, V, is assumed proportional to the total future 

discounted harvest for all time.  The summation is over time from the present to infinity, 

δ is the discount factor, and Ct is catch in year t.  The economic discount factor δ (0 < δ 

< 1) measures the manager’s preference for current versus future harvest.  For 

example, if δ = 0.98 then 100 fish this year are considered to be as valuable as 98 fish 

next year, or 100 x 0.982 ≈ 96 fish in two years.  Discount factors are controversial in 
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natural resource management (Heal 1997).  For the purposes of this book, expression 

17 is offered as an arbitrary benchmark for performance of the management system 

that is similar to the performance measures used by many other authors.  Note that the 

economic discount factor used in this chapter is different in meaning from the statistical 

discount factor used in Bayesian nonlinear dynamic regression (Appendix). 

 

The optimal policy can be found by maximizing the following expression with 

respect to harvest: 

 

 V(At) = Ct  + δ E [V(At+1)]       (18) 

 

where E is the mathematical expectation operator, which corresponds to the mean over 

the posterior distribution of V(At+1) (Clark 1990).  This expected value depends on the 

policy choice Ct.  The optimal policy is found by establishing a target population size y 

and moving to that level as quickly as possible (Clark 1990).  Define u(A,y) as the 

harvest that will move the population to a target level y in one time step 

 

u(A,y) = A exp(Mi) - y      (19) 

 

In equation 19, Mi  is calculated from one of the fitted models (Equations 14 or 15), or 

from the true model (Equations 10 to 12).  In the latter case, Mi corresponds to G from 

equation 11.  When one of the fitted models is used, Mi corresponds to Y from equation 

14 or 15.  Because harvest cannot be negative, we set 
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 Ct = u(At,y)  if u(At,y) ≥ 0       (20A) 

 

 Ct = 0  if u(At,y) < 0        (20B) 

 

Each model yields a distribution of future values of At.  The distribution of log(At) is 

normal in the case of the true model, and Student-t in the case of the fitted models 

(Gelman et al. 1995).  In computing policies we must account for the probability of 

obtaining each possible value of At+1 given a particular value of At.  This was done by 

computing probabilities on a discrete mesh, then weighting each possible value of At+1 

by its probability, as in Carpenter et al. (1999b) Appendix C.  I used a mesh of 50 grid 

cells uniformly distributed over the interval [log(Â) – 4 slog(Â),  log(Â) + 4 slog(Â)] where 

log(Â) is the expected value of log(A) and slog(Â) is the standard deviation for the 

prediction of log(A).  Given these definitions, equation 18 can be computed for any 

given value of y.  The value of y that maximizes V is computed by Brent’s method 

(Press et al. 1989) over the interval [0,At]. 

 

When the experimental data do not clearly favor one model over another, model 

uncertainty may have a significant influence on policy calculations for resource 

management (Walters 1986, Peterson et al. 2003).  Model uncertainty refers the 

probability that a given model is true.  It is different from parameter uncertainty, which 

relates to the probability distribution of parameters, and from the error term of the 

model, which relates to the probability distribution of model residuals.  Like parameter 
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uncertainty and the model error term, model uncertainty affects the uncertainty of 

predictions. 

 

To account for the effect of model uncertainty on predictions, I calculated a third 

estimate of optimal population size by Bayesian model averaging, or BMA (Raftery et al. 

1997, Fernández et al. 2001).  BMA is a weighting method, in which the impact of each 

model on the policy is weighted according to the credibility of the model.  The credibility 

is based on the model’s fit to data.   According to this procedure, the Bayesian model 

average utility, VBMA, for a given y value is calculated over both fitted models (Raftery et 

al. 1997, Fernández et al. 2001) as: 

 

 VBMA(y) = p VD(y) + (1-p) VH(y)      (21) 

 

VD is the utility under the simple density-dependent model (Equation 14) given y, VH is 

the utility under the habitat model  (Equation 15) given y, and p is the posterior 

probability of the simple density-dependent model.  The posterior probability p is 

computed by the method of Fernández et al. (2001, using her equations 2.12 and 4.1).  

In this exercise, there are only two models so the posterior probability of the habitat 

model is 1-p.  The optimal population size is computed by finding the target level y 

which maximizes E[VBMA(y)].  As described above for the individual models, this 

expectation was computed over a discrete mesh, assuming a Student-t distribution for 

the predictive distribution of the two estimated models.  The value of y that maximizes 

E[VBMA(y)] is computed by Brent’s method (Press et al. 1989) over the interval [0,At]. 
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Results 

 

 The birth and death rates of the fish population for three different habitat 

conditions were calculated using Equation 13 (Fig. 43).  In all cases the birth and death 

rate curves cross at two values of A.  The right intersection point is stable: at slightly 

larger values of A, deaths exceed births and drive the population down to the 

intersection point, while at slightly smaller values of A, births exceed deaths and drive 

the population up to the intersection point.  This stable value of A is the same for all 

three habitat conditions. The left intersection point, the threshold for collapse of the fish 

stock, is unstable.  At slightly larger values of A, births exceed deaths and drive the 

population toward the right intersection point.  At slightly lower values of A, deaths 

exceed births and the population is driven extinct.  This threshold occurs at increasingly 

large population sizes as the habitat deteriorates. 

 

 Two simulated experiments were calculated to fit the approximate models of 

equations 14 and 15 (Table 6).  In each experiment, fish stock size and habitat condition 

are manipulated in a number of lakes, and then the fish dynamics are observed for two 

years.  The “strong contrast” experiment is an example of data which might derive from 

an aggressive program of experimental management.  It substantially reduces the 

model uncertainty.  The “weak contrast” experiment represents data which poorly 

discriminate the models.  Note, however, that even this rather uninformative experiment 

assumes that 6 manipulated lakes are studied.  Also, in these simulations I have 
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assumed that observation error is negligible due to intensive sampling.  Thus even the 

“weak contrast” data in this exercise are substantially better than those available for 

most lake management decisions. 

 

 Posterior probabilities of the two fitted models were calculated by the method of 

Fernandez et al. (2001) (Table 6).  The weak-contrast experiment does not discriminate 

the two models; each has a posterior probability near 0.5.  The strong-contrast 

experiment detects the habitat effect.  Consequently, given the strong-contrast 

experiment there is a high posterior probability for the habitat model and a low posterior 

probability for the simple model. 

 

 The experiments differed sharply in their estimation of the threshold (Table 7).  

With strong-contrast data, the estimated threshold was within about 10 fish / ha of the 

true threshold.  The estimated threshold decreased as habitat quality increased, 

consistent with the true ecosystem dynamics.  Standard deviations of threshold 

estimates were 11 to14 fish ha-1, reflecting the magnitude of uncertainty about the 

location of the threshold.  With weak-contrast data, the estimate of the threshold was 

much more uncertain.  The mean estimate was negative in all cases.  There was no 

clear trend of the threshold with changing habitat conditions.  In practice, this would be 

interpreted as evidence for only one positive intersection of the birth and death curves, 

the stable one (Fig. 43).  The analyst would conclude, incorrectly, that depensatory 

collapse was not possible for this fish stock.  However, the standard deviations are quite 

large, indicating considerable uncertainty about the location of the threshold.   
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 I compared the performance of optimal management using weak-contrast data 

and strong-contrast data for lakes with the three habitat conditions shown in Fig. 43.  In 

each case, I will compare optimal population targets as a function of fish population size 

(Figs. 44 to 46).  These targets are computed under 4 models:  the fitted simple model, 

the fitted habitat model, the Bayesian average of these two fitted models, and the true 

model.  In each case, it is interesting to assess the performance of the models near the 

threshold for fish population collapse. 

 

 When the fish habitat is poor, the threshold for collapse occurs when the fish 

population declines to about 50 fish ha-1 (Fig. 43A).  Note that in this case the habitat 

level used for the policy calculations was a treatment level in the experiments (Table 6).  

Given the true system dynamics, the policy calculations show correctly that the 

population must drop to zero if the initial stock size is less than about 50 fish ha-1 (Fig. 

44D).  With weak-contrast data, under which the simple model is credible (Table 6), the 

simple model indicates that positive populations can be maintained with initial stock 

sizes as low as about 42 fish ha-1 (Fig. 44A).  With strong-contrast data, the simple 

model indicates that positive populations can be maintained from initial stock sizes as 

low as nearly 20 fish ha-1, but the credibility of the simple model is very low if the 

contrast in the data is strong.  The habitat model is close to the correct threshold with 

weak-contrast data (Fig. 44B).  With strong-contrast data, the habitat model incorrectly 

indicates that positive fish populations can be maintained when the initial stock is as low 

as about 42 fish ha-1.  The Bayesian model average gives similar results for both weak-
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and strong-contrast data (Fig. 44C).  It indicates incorrectly that positive stocks can be 

maintained if the initial stock is as low as about 42 fish ha-1. 

 

 When the fish habitat is moderate, the threshold for collapse occurs at a fish 

population of about 22 fish ha-1 (Fig. 43B).  In this case, the habitat level used for the 

policy calculations is not included in either experiment, but is close to one of the 

experimental treatments used in the strong-contrast data (Table 6).  Given the true 

population dynamics, the policy calculation is close to the true threshold (Fig. 45D); the 

small error is attributable to the mesh interval used for initial stock sizes.  The simple 

model is close to the true threshold given strong contrast data (Fig. 45A), but of course 

this model has low credibility under the strong contrast data.  With weak contrast data, 

the simple model indicates, incorrectly, that the threshold is about 40 fish ha-1.  The 

habitat model indicates that the threshold is about 30 fish ha-1 for both weak- and 

strong-contrast data (Fig. 45B).  The Bayesian model average indicates that the 

threshold is between about 30 and 40 fish ha-1, depending on the data set (Fig. 45C). 

 

 When the fish habitat condition is high, the threshold for collapse occurs at a fish 

population of about 17 fish ha-1 (Fig. 43C).  In this case, the habitat level used for the 

policy calculations is included in the strong-contrast data set, but must be extrapolated 

in the weak-contrast data set (Table 6).  Given the true population dynamics, the shift in 

policy occurs below the true threshold (Fig. 46D).  This is a conservative policy, in the 

sense that a population below the threshold is underharvested and may recover due to 

a fortunate stochastic shock.  The simple model overestimates the true threshold under 

DRAFT:  DO NOT CITE OR QUOTE 18



both data sets (Fig. 46A).  The habitat model accurately estimates the threshold for the 

strong-contrast data set, and overestimates the threshold for the weak contrast data set 

(Fig. 46B). The Bayesian model average also gets the threshold about right given the 

strong-contrast data, and overestimates the threshold given the weak-contrast data 

(Fig. 46C). 

 

 To assess the overall performance of the estimated models, the difference in 

optimal stock sizes between the true model and the Bayesian model average was 

calculated (Fig. 47).  This difference is zero when the estimation is perfect.  Note that, in 

every case, the deviation between true and estimated models is greatest near the 

threshold.  True threshold values were about 50 fish ha-1 for poor habitat, 22 fish ha-1 for 

moderate habitat, and 17 fish ha-1 for good habitat (Fig. 43).  With weak-contrast data, 

the performance is significantly worse.  The estimated model routinely underestimates 

optimal population size, an error that will lead to overharvest. 

 

Discussion 

 

The model is a highly simplified representation of fish management.  The simplifications 

were designed to investigate the effects of ecosystem experimentation on inference 

about thresholds and optimal harvest policies based on these inferences.  The exercise 

shows that thresholds are difficult to measure without strong experimental 

manipulations that yield high-contrast data.  Even when such data are available, 
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uncertainty is high near the threshold and policy choices are strongly affected by this 

uncertainty.  

 

 There are several assumptions that have strong effects on these findings.  First, 

the model assumes that factors governing fish dynamics are the same across lakes, so 

the model and parameter estimates apply to all the lakes on the landscape.  If it is not 

appropriate to describe the lakes using a common model, then the management 

problem is more similar to the case described in Chapter V, where each ecosystem is 

unique.  This issues could be explored using a hierarchical Bayesian model (Gelman et 

al. 1995), in which the parameters for the threshold of a particular lake were viewed as 

a sample from a meta-distribution of parameters for the set of lakes on the landscape. 

 

The model assumes that the threshold is constant over time.  In reality, the 

threshold could move slowly over time due to changes in habitat, food web composition, 

or other ecological factors that were not included in the model.  If the threshold moves 

over time, then repeated experiments will be necessary to track the changes.  In 

general, this will increase uncertainty for model predictions and policy choices at any 

given time. 

 

It is assumed that the habitat and harvest can be manipulated independently in 

entire lakes.  Such replicated, multi-factor ecosystem experiments are rarely possible.  

Most ecosystem experiments have involved one or two manipulated ecosystems and 

one or two reference (or control) ecosystems (Carpenter et al. 1995, Carpenter 1998).  
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When an ecosystem experiment reveals something important, the experiment tends to 

be repeated  by different research groups in different regions (Carpenter 1998).  This 

type of replication leads to especially robust inferences, because it samples across 

regional differences in ecosystems as well as differences in methodology and practice 

among research groups.  However, this type of replication takes a long time.  It leads to 

inferences more slowly than the experiments assumed in this model.  Slow inference 

could lead to much greater uncertainty about the location of the threshold, especially if 

the threshold is moving over time. 

 

Some of the experimental manipulations assumed in the model are drastic ones 

that involve massive changes to habitat, deliberate overharvest of fish stocks, or severe 

reductions in harvest of fish stocks.  While these extreme treatments are the most 

important ones for identifying the threshold, they are the most difficult ones to conduct.  

Extreme manipulations often face political barriers (Walters 1997, Carpenter 1998).  

When extreme manipulations are omitted, the situation is similar to the “weak contrast” 

situation shown in this chapter:  high uncertainty, poorly-characterized thresholds, 

underestimate of optimal stock sizes, and overharvest with risk of inadvertent collapse.  

Ironically, a manager who avoids extreme manipulations will promote overharvest and 

risk collapse of fish stocks in most of the lakes on the landscape.  While the extreme 

manipulations will damage some ecosystems, they lead to better policies in many other 

ecosystems.  For the manager who is responsible for a landscape of lakes, there are 

significant advantages in investing in a few extreme experimental treatments. 

 

DRAFT:  DO NOT CITE OR QUOTE 21



Data and inference about thresholds 

 

This exercise shows that analyses of thresholds demand excellent data.  Given strong-

contrast data, it may be possible to locate the general neighborhood of a threshold and 

take appropriate management action.   

 

 Even with excellent data, however, it is very difficult to locate the threshold with 

precision.  This modeling exercise employed simplifying assumptions that made it 

easier to locate the threshold.  Despite these assumptions, there was considerable 

variability in estimates of the threshold.  Uncertainty about the threshold resulted from 

the process variance of the fish dynamics and uncertainty about which model was 

appropriate.  In a more realistic situation, there would be additional sources of 

uncertainty, including observation error and dynamics of other slowly-changing 

variables (in addition to W) that could cause the threshold to shift over time.  Also, I 

have assumed that whole-ecosystem observations for similar lakes are available for 

fitting the models.  In reality, it might be necessary to estimate some parameters using 

data from small-scale experiments.  In this case there are additional uncertainties due to 

extrapolating parameters from one scale to another.  Therefore, this chapter has 

presented a rather optimistic scenario for estimating thresholds.  In most practical 

situations, the uncertainties will be substantially larger than portrayed here. 

 

 In most cases, the estimated models underestimate the size of the population 

that can be sustained in the neighborhood of the threshold.  Put another way, the 
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estimated models tend to indicate that the threshold occurs at a population size larger 

than the true threshold.  The impact of this overestimate on decisions would depend on 

the goals of the manager.  A manager who was purely interested in optimal yield would 

assume that the population should be driven extinct from starting levels below the 

apparent threshold, but above the true the threshold.  This error would lead to 

extirpation of stocks that are in fact potentially sustainable.  A manager who sought to 

avoid thresholds, however, would behave more conservatively.  Such a manager would 

harvest cautiously at stock sizes well above the true threshold, because of the fitted 

models’ overestimation of the true threshold.  These very different outcomes depend 

entirely on the managers’ preference for maximizing expected present value of harvest 

versus avoiding the threshold for collapse. 

 

Effect of the threshold on policy choice 

 

Near the threshold, there is a sharp change in the optimal control policy.  Above the 

threshold, the policy is to sustain a positive fish stock.  Below the threshold, the policy is 

to harvest all remaining fish and drive the stock to zero.  When the model for fish 

dynamics is estimated from data, the estimated location of the threshold has a powerful 

effect on policy choice.  In any particular situation, the decision depends on the initial 

stock size, the choice of model for fish dynamics, and the estimates of parameters for 

that model, including parameter variances and the model variance. 
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 The “use them or lose them” feature of the optimal control solutions occurs in 

many analyses of this type (Clark 1990, Ludwig et al. 2003).  It is a consequence of the 

arbitrary decision to maximize net future discounted harvest.  If this goal was replaced 

by a different goal, such as to avoid the threshold, different policies would result 

(Limburg et al. 2002).  If the goal is to avoid collapse, one would sharply reduce harvest 

at stock sizes well above the threshold.  At lower stock sizes, one would try to rebuild 

the population, for example by stocking or creating connections to refuges. 

 

Implications for experimental management 

 

If the goal of management is to avoid the threshold, ecosystem experiments can 

significantly improve the information for choosing management targets.  The 

experiments also show the cost of crossing thresholds in direct and powerful ways.  

Thus ecosystem experiments combined with precautionary management appear to be a 

promising approach for modular ecosystems like lakes. 

 

 A landscape of similar ecosystems offers interesting possibilities for actively 

adaptive experimental management.   By using a subset of the available ecosystems for 

strong-contrast experiments, it is possible to gain substantial information about regimes 

and thresholds.  However, it is risky to use this information for optimal control near the 

threshold.  If the goal of management is sustaining the ecosystem, then a more 

precautionary approach is necessary.  In this case, the precautionary choices are 

informed by relatively precise information about the location of the threshold.  The 
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precautionary manager should recognize that the location of the threshold is uncertain 

and that the threshold might be moving.  The experimental results are best used to 

design rough guidelines and simple rules for maintaining the system in desired regimes.   

 

 Strong-contrast data provide better information about the location of the 

threshold, and thereby lead to policies that are more likely to avoid the threshold while 

coming close to maximizing the long-term yield of the fishery.  With weak-contrast data, 

the performance of the management system is significantly worse.  One can reach the 

erroneous conclusion that there is no threshold.  At best the estimate of the threshold 

will have high variance.  The resulting policies aim for stock sizes that are too low.  

Consequently, stocks are overharvested, leading to frequent collapses as thresholds 

are crossed.  These unwanted stock collapses are a direct result of weak-contrast data. 

 

 Extreme manipulations are necessary to create strong-contrast data.  These 

extreme manipulations will damage some ecosystems, and for this reason they may be 

opposed by the public and by some managers.  However, strong-contrast data are a 

good investment when it is possible to manipulate a few ecosystems to obtain 

information that is useful for managing many ecosystems.  Weak-contrast data can lead 

to far more damage as ecosystems are over-exploited due to poor knowledge of 

thresholds. 

 

Summary 
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Actively adaptive experimental management has great potential for landscapes with a 

multiplicity of similar ecosystems.  While lakes are the focus of this chapter, analogous 

approaches may be possible for other types of modular ecosystems, such as small 

watersheds or islands.  Experimentation on a subset of the ecosystems can reveal 

which regimes are possible and provide rough estimates of the thresholds.  Such 

information is valuable for maintaining desired regimes.   

 

 Management actions may cross thresholds inadvertently when thresholds are 

poorly known.  Results of this chapter show that poor knowledge of the threshold leads 

to overly aggressive harvest policies that increase the risk of crossing the threshold.  

This may occur in many situations where policies push ecosystem state near to 

unknown thresholds.  It may be possible to devise utility functions that lead to less risky 

choices when a threshold is more uncertain (Heal and Kriström 2002). 

 

Successful experiments involve strong manipulations that cross thresholds in 

some ecosystems.  Such experiments yield data with strong contrasts between 

experimental treatments.  While locations of thresholds will be uncertain after even the 

best experiments, experimental estimates of thresholds lead to better policy choices 

within the framework described in this chapter.  Prospects for maintaining a desired 

regime are improved when experimental estimates of thresholds are employed in 

precautionary policies that seek to avoid thresholds. 
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 To provide useful information about thresholds, thresholds must be crossed in 

some experimental ecosystems.  This means that some ecosystems will be damaged 

by the manipulations.  This damage must be weighed against the improved 

performance of management for the other ecosystems of the landscape.  If extreme 

manipulations are not performed, the weak-contrast data that result lead to a number of 

policy problems related to high uncertainty.  Within the framework of this chapter, weak-

contrast data lead to erroneous conclusions about absence of a threshold, or large 

errors in estimating the location of the threshold.  The consequence is overexploitation 

with high risk of inadvertently crossing the threshold to an unwanted regime.  Avoidance 

of extreme manipulations has severe consequences, leading to ecosystem damage that 

far exceeds the potential impact of the experiments. 

 

Even under the best conditions, estimates of threshold location for real 

ecosystems will have substantial errors.  Given the complexity of ecosystems, and the 

challenges of experimenting with them, it seems unlikely that precise quantitative 

measurements of any important threshold will be attainable.  Nevertheless, ecosystem 

experiments that cross thresholds lead to rough estimates of threshold location that 

could be extremely useful in management.  Such experiments reveal the levels of 

exploitation that can be maintained without a costly regime shift.  Policies that seek to 

avoid collapse by maintaining ecosystems far from thresholds, and well within desirable 

domains, may succeed.  If management seeks to avoid the threshold, this implies a 

different utility function with a heavy penalty for transcending the threshold (Heal and 

Kriström 2002).  Thus, the combination of experimentation on a subset of ecosystems 
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with precautionary management appears to be a promising management approach for 

modular ecosystems such as lakes, small watersheds or islands. 
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Tables 
 
Table 6.  Description of the simulated experiments. 
 
 
 
 
Contrast 

 
 
Number 
Of Lakes 

 
Initial 
Fish 
Stocks (A) 

 
 
Habitat 
Conditions (W)

Posterior 
probability
for Simple
Model 

Posterior 
probability  
for Habitat 
Model 

Weak 6 10, 55, 100 0.4, 1.4 0.49 0.51 
Strong 25 10, 32, 55, 

77, 100 
0.4, 0.75, 1.1, 
1.45, 1.8 

0.01 0.99 

 
 
 
Table 7.  Estimated threshold (fish ha-1) for an unharvested fish population given the 
weak-contrast and strong-contrast data sets described in Table 6.  Means and standard 
deviations (in parentheses) are presented.  The threshold was estimated using the 
simple model (Equation 14) and the habitat model (Equation 15) at three habitat levels, 
assuming C = 0.  Means and standard deviations of the threshold were calculated by 
parametric bootstrapping from the multivariate Student-t distribution of estimated 
parameters and the Student-t distribution of residuals (Efron and Tibshirani 1993). 
 
 Simple Model Habitat Model Habitat Model Habitat Model 
Contrast All W values W = 0.4 W = 0.8 W = 1.8 
Weak -58.1 (1530) -19.4 (277) -14.3 (250) -18.9 (249) 
Strong 26.2 (14.1) 40.3 (11.6) 27.1 (11.8) 18.2 (11.3) 
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Figures 

Figure 41.  Overview of the system analyzed in this chapter.  Many similar lake fisheries 

on a landscape are subject to management.  A subset of the lakes is available for 

experimentation to gain information about fish population dynamics and possible 

thresholds. (Original) 
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Figure 42.  Flow chart of model calculations presented in this chapter. (Original) 

Experimental Design
(Weak Contrast Data versus Strong Contrast Data)

Simulate Ecosystem Dynamics using
True (but Unknown) Model

Fit Alternative Models to Simulated Data
(Simple Model versus Habitat Model)

Calculate Optimal Harvest Policies for Models:
Fitted Simple Model
Fitted Habitat Model

Bayesian Average of Fitted Models
True Model
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Figure 43.  Vital rates from the deterministic part of the fish population model (births 

solid line, deaths dashed line; both in fish ha-1 y-1) versus population size (fish / ha).  A. 

Poor habitat (W = 0.4).  B. Moderate habitat (W = 0.8).  C. Abundant habitat (W = 1.8).  

Values of other parameters are C = 4, q = 4, k = 0.1, f = 0.01, m = 0.01, c = 10, h = 10. 

(Original) 
death

birth
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Figure 44.  Apparently optimal population size (fish / ha) versus initial fish population 

(fish / ha) in simulations with poor habitat (W = 0.4).  In panels A-C, optimal population 

sizes are calculated by fitting models to data with weak contrast (dashed line) or strong 

contrast (solid line).  A.  Simple model with density-dependence.  B.  Habitat model, with 

density dependence and a habitat effect.  C.  Bayesian model average of the simple 

model and the habitat model.  D.  Optimal population size calculated from true system 

dynamics.  Values of parameters as in Fig. 1.  Additional parameter values are s = 0.1, 

δ = 0.98. (Original) 
Ap
pa

re
nt

ly
 O

pt
im

al
 P

op
ul

at
io

n

Initial Population

A. Simple Model

B. Habitat Model

C. Bayesian Model Average

D. True System Dynamics

strong contrast

weak contrast

DRAFT:  DO NOT CITE OR QUOTE 33



 

Figure 45.  Apparently optimal population size (fish / ha) versus initial fish population 

(fish / ha) in simulations with moderate habitat (W = 0.8).  In panels A-C, optimal 

population sizes are calculated by fitting models to data with weak contrast (dashed 

line) or strong contrast (solid line).  A.  Simple model with density-dependence.  B.  

Habitat model, with density dependence and a habitat effect.  C.  Bayesian model 

average of the simple model and the habitat model.  D.  Optimal population size 

calculated from true system dynamics.  Values of parameters as in Fig. 1.  Additional 

parameter values are s = 0.1, δ = 0.98. (Original) 
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Figure 46.  Apparently optimal population size (fish / ha) versus initial fish population 

(fish / ha) in simulations with abundant habitat (W = 1.8).  In panels A-C, optimal 

population sizes are calculated by fitting models to data with weak contrast (dashed 

line) or strong contrast (solid line).  A.  Simple model with density-dependence.  B.  

Habitat model, with density dependence and a habitat effect.  C.  Bayesian model 

average of the simple model and the habitat model.  D.  Optimal population size 

calculated from true system dynamics.  Values of parameters as in Fig. 1.  Additional 

parameter values are s = 0.1, δ = 0.98. (Original) 
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Figure 47.  Difference between estimated optimal population size and the optimal 

population size (fish / ha) computed from the true system dynamics versus the initial 

population (fish / ha).  The y-axis value is calculated as the estimated optimal population 

size from Bayesian model averaging minus the optimal population size if the true 

system dynamics were known.  Solid lines show results with strong-contrast data set, 

and dashed lines show results with weak-contrast data set.  A.  Poor habitat (W = 0.4).  

B.  Moderate habitat (W = 0.8).  C.  Abundant habitat (W = 1.8).  All other parameters as 

in Figs. 2 – 4. (Original) 
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